Pesquisar este blog

terça-feira, 1 de outubro de 2013

Amber frcmod file - Dihedral info

Here I show the dihedral part of the frcmod file from Amber code.

DIHE       divider  Force       Phase             Periodicity
ca-ca-cd-cc   1    2.550       180.000           2.000      same as X -c2-ca-X
ca-ca-cd-nh   1    2.550       180.000           2.000      same as X -c2-ca-X
na-cc-os-Cu   1    1.050       180.000           2.000      same as X -c2-os-X (?)
cc-os-Cu-nh   1    1.050         1.000           2.000      ATTN, need revision (?)
cc-os-Cu-os   1    0.000       180.000           2.000      ATTN, need revision (?)
cd-cc-os-Cu   1    1.050       180.000           2.000      same as X -c2-os-X (?)
cd-nh-Cu-os   1    1.050         1.000           2.000      ATTN, need revision (?)
cd-nh-Cu-nh   1    1.050       180.000           2.000      ATTN, need revision (?)
os-Cu-nh-c3   1    1.050       178.000           2.000      MBG, need revision
os-Cu-nh-cc   1    1.050       180.000           6.900      MBG, at least 2 minima
os-Cu-os-cd   1    1.050       177.000           2.000      MBG, need revision
Cu-os-cd-cc   1    1.050         0.800           2.000      MBG, as X -c2-os-X
Cu-os-cd-na   1    1.050       179.000           2.000      MBG, same as X -c2-os-X
nh-Cu-nh-c3   1    1.050         2.200           2.000      MBG, need revision
nh-Cu-nh-cc   1    1.050      -176.000           2.000      MBG, need revision
nh-Cu-os-cd   1    1.050       180.000           2.950      MBG, 2 minima
nh-cc-ca-ca   1    2.550       180.000           2.000      same as X -c2-ca-X
cd-cc-ca-ca   1    2.550       180.000           2.000      same as X -c2-ca-X


%FLAG DIHEDRAL_FORCE_CONSTANT
%FORMAT(5E16.8)  (PK(i), i=1,NPTRA)
  PK     : force constant for the dihedrals of each type, kcal/mol

%FLAG DIHEDRAL_PERIODICITY
%FORMAT(5E16.8)  (PN(i), i=1,NPTRA)
  PN     : periodicity of the dihedral of a given type

%FLAG DIHEDRAL_PHASE
%FORMAT(5E16.8)  (PHASE(i), i=1,NPTRA)
  PHASE  : phase of the dihedral of a given type, radians

3DNA

1) rodar ptraj pra converter a trajetória mdcrd em pdb:

more test.ptraj
trajin dna_solv_md1.mdcrd 1 599 100 
strip :WAT,Na+
center :1-12 mass origin
image origin center familiar

trajout output.pdb pdb append

 ptraj dna_solv.top < test.ptraj


2) rodar o find_pair
find_pair [OPTION] PDBFILE OUTFILE

3) 
ANÁLISE PARA UM FRAME:
analyse dna.inp

ANÁLISE PARA UMA TRAJETÓRIA:
rodar o x3dna_ensemble analyze -b dna.inp -e output.pdb 
/Desktop/DNA/DNA_6/GCCGGC/4-MD


ASSIM COM O INPUT (dna.inp), executar o comando analyse:

analyse dna.inp

__________________________



EXECUTA O COMANDO:
find_pair  dna.pdb dna.inp

handling file
uncommon residue DG5    1  on chain   [#1] assigned to: g
uncommon residue DC3    6  on chain   [#6] assigned to: c
uncommon residue DG5    7  on chain   [#7] assigned to: g
uncommon residue DC3   12  on chain   [#12] assigned to: c


Assim obtém o arquivo de input dna.inp



dna.pdb
dna.out
    2         # duplex
    6         # number of base-pairs
    1    1    # explicit bp numbering/hetero atoms
    1   12  0 #    1 | ..1.>-:...1_:[DG5]g-----c[DC3]:..12_:-<..1.  0.21  0.16 32.59  8.95 -2.84
    2   11  0 #    2 | ..1.>-:...2_:[.DC]C-----G[.DG]:..11_:-<..1.  1.29  1.27 22.18  9.05 -0.06
    3   10  0 #    3 | ..1.>-:...3_:[.DG]G-----C[.DC]:..10_:-<..1.  0.95  0.82 18.09  9.13 -1.51
    4    9  0 #    4 | ..1.>-:...4_:[.DC]C-----G[.DG]:...9_:-<..1.  0.93  0.22 14.21  8.93 -2.92
    5    8  0 #    5 | ..1.>-:...5_:[.DG]G-----C[.DC]:...8_:-<..1.  0.58  0.48 23.29  9.03 -2.28
    6    7  0 #    6 | ..1.>-:...6_:[DC3]c-----g[DG5]:...7_:-<..1.  1.62  1.61 36.71  8.63  1.67
##### Base-pair criteria used:     4.00     0.00    15.00     2.50    65.00     4.50     7.80 [ O N]
##### 0 non-Watson-Crick base-pairs, and 1 helix (0 isolated bps)

##### Helix #1 (6): 1 - 6

Não sei o que são os valores a direita





3) rodar o x3dna_ensemble analyze -b dna.inp -e output.pdb 
/Desktop/DNA/DNA_6/GCCGGC/4-MD


ASSIM COM O INPUT (dna.inp), executar o comando analyse:

analyse dna.inp


 more dna.out 
****************************************************************************
    3DNA v2.1 (2013), created and maintained by Xiang-Jun Lu (PhD)
****************************************************************************
1. The list of the parameters given below correspond to the 5' to 3' direction
   of strand I and 3' to 5' direction of strand II.

2. All angular parameters, except for the phase angle of sugar pseudo-
   rotation, are measured in degrees in the range of [-180, +180], and all
   displacements are measured in Angstrom units.
****************************************************************************
File name: dna.pdb
Date and time: Thu Oct 10 15:18:44 2013

Number of base-pairs: 6
Number of atoms: 386
****************************************************************************
****************************************************************************
RMSD of the bases (----- for WC bp, + for isolated bp, x for helix change)

            Strand I                    Strand II          Helix
   1   (0.068) ..1.>-:...1_:[DG5]g-----c[DC3]:..12_:-<..1. (0.035)     |
   2   (0.032) ..1.>-:...2_:[.DC]C-----G[.DG]:..11_:-<..1. (0.069)     |
   3   (0.058) ..1.>-:...3_:[.DG]G-----C[.DC]:..10_:-<..1. (0.038)     |
   4   (0.033) ..1.>-:...4_:[.DC]C-----G[.DG]:...9_:-<..1. (0.063)     |
   5   (0.049) ..1.>-:...5_:[.DG]G-----C[.DC]:...8_:-<..1. (0.049)     |
   6   (0.030) ..1.>-:...6_:[DC3]c-----g[DG5]:...7_:-<..1. (0.057)     |

****************************************************************************
(RMSD em relação ao DNA canônico)



****************************************************************************
Detailed H-bond information: atom-name pair and length [ O N]
   1 g-----c  [3]  O6 - N4  3.02  N1 - N3  2.81  N2 - O2  3.01
   2 C-----G  [3]  N4 - O6  3.39  N3 - N1  3.02  O2 - N2  2.92
   3 G-----C  [3]  O6 - N4  3.48  N1 - N3  3.14  N2 - O2  2.74
   4 C-----G  [3]  N4 - O6  2.93  N3 - N1  2.99  O2 - N2  2.98
   5 G-----C  [3]  O6 - N4  3.10  N1 - N3  3.06  N2 - O2  2.98
   6 c-----g  [3]  N4 - O6  2.98  N3 - N1  2.93  O2 - N2  2.78

****************************************************************************
(distância das ligações de hidrogênio entre as bases)



****************************************************************************
Overlap area in Angstrom^2 between polygons defined by atoms on successive
bases. Polygons projected in the mean plane of the designed base-pair step.

Values in parentheses measure the overlap of base ring atoms only. Those
outside parentheses include exocyclic atoms on the ring. Intra- and
inter-strand overlap is designated according to the following diagram:

                    i2  3'      5' j2
                       /|\      |
                        |       |
               Strand I |       | II
                        |       |
                        |       |
                        |      \|/
                    i1  5'      3' j1

     step      i1-i2        i1-j2        j1-i2        j1-j2        sum
   1 gC/Gc  0.86( 0.04)  0.00( 0.00)  0.00( 0.00)  1.65( 0.35)  2.52( 0.39)
   2 CG/CG  0.60( 0.00)  0.00( 0.00)  0.55( 0.00)  2.97( 0.80)  4.13( 0.80)
   3 GC/GC  3.83( 1.49)  0.00( 0.00)  0.00( 0.00)  5.22( 2.35)  9.05( 3.84)
   4 CG/CG  1.21( 0.00)  0.00( 0.00)  1.12( 0.00)  0.58( 0.00)  2.90( 0.00)
   5 Gc/gC  4.67( 2.05)  0.00( 0.00)  0.00( 0.00)  2.43( 0.37)  7.11( 2.43)

****************************************************************************
(valores mais importantes são os entre parênteses)
The same strand (intrastrand crosslink) 
The opposite strands of the DNA (interstrand crosslink).

****************************************************************************
Origin (Ox, Oy, Oz) and mean normal vector (Nx, Ny, Nz) of each base-pair in
   the coordinate system of the given structure

      bp        Ox        Oy        Oz        Nx        Ny        Nz
    1 g-c     29.711    27.758    19.769    -0.256    -0.075     0.964
    2 C-G     29.755    27.143    24.577     0.214     0.006     0.977
    3 G-C     30.188    27.559    27.233     0.125     0.062     0.990
    4 C-G     30.319    28.629    31.019     0.126     0.179     0.976
    5 G-C     30.297    28.839    34.366     0.066     0.172     0.983
    6 c-g     30.555    29.126    38.647    -0.095     0.297     0.950
****************************************************************************




Local base-pair parameters
     bp        Shear    Stretch   Stagger    Buckle  Propeller  Opening
    1 g-c      -0.01     -0.13      0.16     15.10     28.88     -0.04
    2 C-G       0.19     -0.17      1.27    -11.34    -19.07     -3.46
    3 G-C      -0.40      0.27      0.82     13.24    -12.34      9.70
    4 C-G       0.85     -0.31      0.22     -8.56    -11.34     -4.12
    5 G-C       0.33      0.00      0.48    -14.21    -18.45     -2.44
    6 c-g      -0.08     -0.10      1.61    -36.36      5.08      3.49
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      ave.      0.15     -0.07      0.76     -7.02     -4.54      0.52
      s.d.      0.43      0.20      0.59     19.15     18.55      5.28
****************************************************************************




Local base-pair step parameters
    step       Shift     Slide      Rise      Tilt      Roll     Twist
   1 gC/Gc     -0.00      0.47      4.82     -4.10    -27.28     42.72
   2 CG/CG     -0.25     -0.21      2.70      6.04      0.54     26.19
   3 GC/GC     -0.60     -0.36      3.87     -0.07     -6.79     46.04
   4 CG/CG      0.07     -0.51      3.31      2.96     -1.85     33.13
   5 Gc/gC      0.47     -0.64      4.22     -5.17    -10.62     40.75
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      ave.     -0.06     -0.25      3.79     -0.07     -9.20     37.77
      s.d.      0.40      0.43      0.82      4.71     11.00      8.02
****************************************************************************




Local base-pair helical parameters
    step       X-disp    Y-disp   h-Rise     Incl.       Tip   h-Twist
   1 gC/Gc      3.38     -0.42      3.88    -33.60      5.05     50.50
   2 CG/CG     -0.57      1.80      2.58      1.17    -13.11     26.87
   3 GC/GC      0.23      0.76      3.89     -8.62      0.09     46.51
   4 CG/CG     -0.57      0.37      3.33     -3.23     -5.17     33.31
   5 Gc/gC      0.53     -1.35      4.17    -14.88      7.25     42.36
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      ave.      0.60      0.23      3.57    -11.83     -1.18     39.91
      s.d.      1.63      1.19      0.63     13.57      8.21      9.68
****************************************************************************


Structure classification: 

This is a right-handed nucleic acid structure
****************************************************************************
lambda: virtual angle between C1'-YN1 or C1'-RN9 glycosidic bonds and the
        base-pair C1'-C1' line

C1'-C1': distance between C1' atoms for each base-pair
RN9-YN1: distance between RN9-YN1 atoms for each base-pair
RC8-YC6: distance between RC8-YC6 atoms for each base-pair

    bp     lambda(I) lambda(II)  C1'-C1'   RN9-YN1   RC8-YC6
   1 g-c      58.2      50.6      10.7       8.9       9.8
   2 C-G      56.2      50.9      10.8       9.0       9.9
   3 G-C      58.1      62.1      10.6       9.1      10.3
   4 C-G      58.7      45.6      10.8       8.9       9.7
   5 G-C      56.3      47.6      10.9       9.0      10.0
   6 c-g      55.2      54.8      10.3       8.6       9.6









****************************************************************************
Classification of each dinucleotide step in a right-handed nucleic acid
structure: A-like; B-like; TA-like; intermediate of A and B, or other cases

    step       Xp      Yp      Zp     XpH     YpH     ZpH    Form
   1 gC/Gc   -2.14    8.79    0.78    0.93    7.93   -3.88
   2 CG/CG   -2.90    9.00    0.75   -3.64    8.98    1.13
   3 GC/GC   -3.15    8.91   -0.17   -2.94    8.80   -1.40     B
   4 CG/CG   -2.62    9.28    0.30   -3.09    9.29   -0.16     B
   5 Gc/gC   -2.90    8.45    0.49   -2.57    8.33   -1.52     B









****************************************************************************
Minor and major groove widths: direct P-P distances and refined P-P distances
   which take into account the directions of the sugar-phosphate backbones

   (Subtract 5.8 Angstrom from the values to take account of the vdw radii
    of the phosphate groups, and for comparison with FreeHelix and Curves.)

Ref: M. A. El Hassan and C. R. Calladine (1998). ``Two Distinct Modes of
     Protein-induced Bending in DNA.'' J. Mol. Biol., v282, pp331-343.

                  Minor Groove        Major Groove
                 P-P     Refined     P-P     Refined
   1 gC/Gc       ---       ---       ---       ---
   2 CG/CG       ---       ---       ---       ---
   3 GC/GC       9.3       ---      15.7       ---
   4 CG/CG       ---       ---       ---       ---
   5 Gc/gC       ---       ---       ---       ---
****************************************************************************



****************************************************************************
Global linear helical axis defined by equivalent C1' and RN9/YN1 atom pairs
Deviation from regular linear helix: 3.24(0.42)
Helix:     0.050   0.095   0.994
HETATM 9998  XS    X X 999      30.158  27.323  21.130
HETATM 9999  XE    X X 999      30.960  28.830  36.932
Average and standard deviation of helix radius:
      P: 9.32(0.43), O4': 6.32(0.50),  C1': 5.83(0.36)

Global parameters based on C1'-C1' vectors:

disp.: displacement of the middle C1'-C1' point from the helix
angle: inclination between C1'-C1' vector and helix (subtracted from 90)
twist: helical twist angle between consecutive C1'-C1' vectors
rise:  helical rise by projection of the vector connecting consecutive
       C1'-C1' middle points onto the helical axis

     bp       disp.    angle     twist      rise
   1 g-c      1.81     -4.90     43.18      2.80
   2 C-G      1.54     -6.45     30.09      3.81
   3 G-C      2.48     -5.11     39.24      2.89
   4 C-G      2.74     -9.14     35.00      2.93
   5 G-C      2.86     -7.24     44.91      3.46
   6 c-g      2.93     -4.36      ---       --- 
****************************************************************************
Main chain and chi torsion angles: 

Note: alpha:   O3'(i-1)-P-O5'-C5'
      beta:    P-O5'-C5'-C4'
      gamma:   O5'-C5'-C4'-C3'
      delta:   C5'-C4'-C3'-O3'
      epsilon: C4'-C3'-O3'-P(i+1)
      zeta:    C3'-O3'-P(i+1)-O5'(i+1)

      chi for pyrimidines(Y): O4'-C1'-N1-C2
          chi for purines(R): O4'-C1'-N9-C4

Strand I
  base    alpha    beta   gamma   delta  epsilon   zeta    chi
   1 g     ---     ---     72.5   144.7   -85.0   120.4   -63.7
   2 C    -93.5   126.6    63.4    82.9   170.0   -68.6  -152.4
   3 G    -67.9   177.4    74.5   152.4  -172.8  -103.8  -110.2
   4 C    -68.7   176.8    43.5   116.9   174.4   -92.7  -131.0
   5 G    -59.6   159.0    72.7   138.1   175.1   -88.7  -131.0
   6 c    -88.1  -138.7    48.9   150.9    ---     ---   -120.8

Strand II
  base    alpha    beta   gamma   delta  epsilon   zeta    chi
   1 c    -59.8   147.8    52.4   140.8    ---     ---   -123.5
   2 G    -59.3   160.5    48.7   134.5  -134.0   177.8   -95.1
   3 C    -75.3  -153.5    52.5   132.5  -167.6   -90.7  -110.2
   4 G    -56.4   170.9    51.4   131.3   170.5   -84.6  -121.8
   5 C    -74.2   179.4    59.8   134.6   175.6   -93.0  -110.6
   6 g     ---     ---     48.4   152.4  -162.9  -126.8  -108.0
****************************************************************************


****************************************************************************
Sugar conformational parameters: 

Note: v0: C4'-O4'-C1'-C2'
      v1: O4'-C1'-C2'-C3'
      v2: C1'-C2'-C3'-C4'
      v3: C2'-C3'-C4'-O4'
      v4: C3'-C4'-O4'-C1'

      tm: the amplitude of pucker
      P:  the phase angle of pseudorotation

Strand I
 base       v0      v1      v2      v3      v4      tm       P    Puckering
   1 g    -28.1    41.9   -37.6    25.0     0.9    40.5   158.4    C2'-endo
   2 C     -9.9    -8.4    21.4   -28.9    24.9    27.9    40.1    C4'-exo 
   3 G    -16.7    35.1   -38.7    29.5    -8.0    39.0   173.2    C2'-endo
   4 C    -29.9    25.5   -12.1    -5.2    23.7    30.0   113.7    C1'-exo 
   5 G    -40.8    46.8   -36.5    12.8    17.1    47.2   140.7    C1'-exo 
   6 c    -15.5    29.9   -31.3    23.3    -4.9    31.8   169.9    C2'-endo

Strand II
 base       v0      v1      v2      v3      v4      tm       P    Puckering
   1 c    -12.0    26.3   -29.8    24.2    -8.4    29.9   176.4    C2'-endo
   2 G    -40.2    49.2   -32.9    12.7    15.4    44.5   137.7    C1'-exo 
   3 C     -7.8    22.9   -27.2    21.7    -8.8    27.2   179.9    C2'-endo
   4 G    -35.9    46.0   -37.2    17.8    10.4    44.4   146.9    C2'-endo
   5 C    -23.5    32.8   -30.1    15.8     4.9    33.5   153.8    C2'-endo
   6 g    -15.5    27.9   -28.8    22.4    -4.8    29.3   169.7    C2'-endo
****************************************************************************




****************************************************************************
Same strand P--P and C1'--C1' virtual bond distances

                 Strand I                          Strand II
    step      P--P     C1'--C1'       step      P--P     C1'--C1'
   1 g/C       ---      4.48         1 c/G      6.67      5.37
   2 C/G      6.79      5.46         2 G/C      6.55      4.19
   3 G/C      7.46      4.93         3 C/G      7.10      5.30
   4 C/G      6.76      4.62         4 G/C      7.08      4.64
   5 G/c      7.41      5.85         5 C/g       ---      5.50
****************************************************************************
Helix radius (radial displacement of P, O4', and C1' atoms in local helix
   frame of each dimer)

                        Strand I                      Strand II
     step         P        O4'       C1'        P        O4'        C1'
   1 gC/Gc      7.86      4.28      4.44      8.11      4.98      5.17
   2 CG/CG     10.76      8.64      7.85      8.80      5.33      4.68
   3 GC/GC     10.15      7.01      6.43      8.42      5.44      5.10
   4 CG/CG      9.95      6.71      6.12      9.64      6.61      6.00
   5 Gc/gC      7.17      4.36      4.04     10.35      7.71      7.12
****************************************************************************
Position (Px, Py, Pz) and local helical axis vector (Hx, Hy, Hz)
         for each dinucleotide step

     step       Px        Py        Pz        Hx        Hy        Hz
   1 gC/Gc     32.76     28.04     22.22     -0.11      0.48      0.87
   2 CG/CG     28.25     27.96     26.09      0.05     -0.16      0.99
   3 GC/GC     29.56     28.30     29.09     -0.01      0.12      0.99
   4 CG/CG     30.38     28.09     32.73      0.11      0.08      0.99
   5 Gc/gC     30.20     30.31     36.43     -0.18      0.02      0.98


prep file

Data from: http://ambermd.org/doc/prep.html

It is not necessary to run PREP if all residues needed for a simulation  are  already  present in the standard  AMBER  database, described in the LINK documentation.



Dummy atoms: PREP requires that three dummy atoms  precede
the  actual  atoms of the residue.  These atoms are simply used
to define the space axes for  the  residue.   The  three  dummy
atoms  must be given the topological type "M", and they must be
assigned a force field atom type that defines them   as   dummy
atoms.   The   symbol   "DU"   is  recommended to be consistent
with the standard database.   It  is  necessary  to  have   the
three  initial   dummy   atoms   whether  internal or cartesian
coordinates are given as input.

A 4° coluna pode ser representada por  "Main", "Side", "Branch", "3", "4", "5" "6" e "End" tipos..
Observe que E (end) são os átomos que possui apenas uma ligação, como neste caso são os átomos de hidrogênio.

Autodock

Autodock

Autodock put zero total charge to Cuisaepy. So, the ligand has zro charge and Cu ion has zero charge. I changed by hand the charge of Cu as +1.
The initial docking position was in minor groove with Cu poiting to DNA

The docking results shows an inverted Cuisaepy position with Cu pointing to the outside of the DNA. This because the Cu is highly charged in comparision to the rest of the ligand. So I'll include the resp charges


1) check pdb for DNA+metal-complex
I didn't find it

2) Run resp charges using gaussian

3) Run intercalating complex


/mgltools_x86_64Linux2_1.5.6/bin/pythonsh /mgltools_x86_64Linux2_1.5.6/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_receptor4.py -r DNA.mol2 -C  -U lps -o DNAwh.pdbqt

#/mgltools_x86_64Linux2_1.5.6/bin/pythonsh /mgltools_x86_64Linux2_1.5.6/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_receptor4.py -r DNA.mol2 -C  -U lps -o DNAwh.pdbqt

/mgltools_x86_64Linux2_1.5.6/bin/pythonsh /mgltools_x86_64Linux2_1.5.6/MGLToolsPckgs/AutoDockTools/Utilities24/prepare_ligand4.py -l cie.mol2 -C -p Cu -U lps -o CIEwh.pdbqt


vina --config conf_isaepy.txt --log vina.log

CPMD

mpirun -np 8 cpmd.x cpmd.inp /local/GRS/PROGRAMS_ARCHIVE/CPMD/PP > cpmd.out &



mpdboot -r ssh --totalnumber=4
mpdtrace
mpirun -r ssh -np 24 cpmd.x heating.inp /local/GRS/PROGRAMS_ARCHIVE/CPMD/PP > heating.out &




load WAVEFUNCTION.152.cube; isosurface posname 0.05
"WAVEFUNCTION.152.cube"; isosurface negname -0.05
"WAVEFUNCTION.152.cube"

cpmd2cube.x -halfmesh -psi WAVEFUNCTION.*

Amber iwrap

AMBER MANUAL:
iwrap

If iwrap = 1, the coordinates written to the restart and trajectory files will be "wrapped" into a primary box.

This means that for each molecule, its periodic image closest to the middle of the "primary box" (with x coordinates between 0 and a, y coordinates between 0 and b, and z coordinates between 0 and c) will be the one written to the output file.

This often makes the resulting structures look better visually, but has no effect on the energy or forces.

Performing such wrapping, however, can mess up diffusion and other calculations.

If iwrap = 0, no wrapping will be performed, in which case it is typical to use ptraj as a post-processing program to translate molecules back to the primary box.

For very long runs, setting iwrap = 1 may be required to keep the coordinate output from overflowing the trajectory and restart file formats, especially if trajectories are written in ASCII format instead of NetCDF (see also the ioutfm option). Default = 0.

mpirun -np 8 pmemd.MPI -O -i md6.in -o md6.out -p 3at_solv.top -c 3at_solv_md5.rst -r 3at_solv_md6.rst -x 3at_solv_md6.mdcrd & At this point I changed the input including iwrap=1 


Molecule File Format

mol2

http://www.tripos.com/data/support/mol2.pdf

pdb

http://www.wwpdb.org/docs

3DNA commands

$ find_pair 
===========================================================================
NAME
        find_pair - locate base-pairs and helical regions
SYNOPSIS
        find_pair [OPTION] PDBFILE OUTFILE
DESCRIPTION
        locate base-pairs and helical regions given a PDB data file. Its
        output can be directly fed into analyze, cehs and Lavery's Curves
        program.
        -s, -1  treat the whole structure as a continuous single helix.
                Useful for getting all backbone torsion angles
        -c      get Curves input for a duplex
        -c+     get input for Curves+ (duplex, ATOM records only)
        -d      generate a separate output file for each helical region
        -p      find all base-pairs and higher-order base associations
        -a      read in only the ATOM records, ignoring HETATM records
        -z      more detailed base-pairing information in the output
        -h      this help message (any non-recognized options will do)
INPUT
        PDB data file
        One-letter options can be in either case, any order and combined
EXAMPLES
        find_pair sample.pdb sample.inp
        find_pair -p sample.pdb allbp_list
        find_pair -c+ sample.pdb sample_c+.inp
                  [then run: Cur+ < sample_c+.inp]
OUTPUT
        base-pair listing for input to analyze, cehs and Curves
        bestpairs.pdb, hel_regions.pdb, col_chains.scr, col_helices.scr
        allpairs.pdb, multiplets.pdb, mulbp.inp
SEE ALSO
        analyze, cehs, anyhelix, ex_str, stack2img
AUTHOR
        3DNA v2.1 (2013), created and maintained by Xiang-Jun Lu (PhD)


Please post questions/comments on the 3DNA Forum: http://forum.x3dna.org/


 x3dna_ensemble extract -h
------------------------------------------------------------------------
Extract 3DNA structural parameters of an ensemble of NMR structures or
MD trajectories, after running 'x3dna_ensemble analyze'. The extracted
parameters are intended to be exported into Excel, Matlab and R etc for
further data analysis/visualization.

Usage:
        x3dna_ensemble extract options
Examples:
        x3dna_ensemble extract -l
             # to see a list of all parameters
        x3dna_ensemble extract -p prop
             # for propeller, no need to specify full: -p pr suffices
             # -p 36 also fine (see above); use 'ensemble_example.out'
        x3dna_ensemble extract -p slide -s , -f ensemble_example3.out
             # comma separated, from file 'ensemble_example3.out'
        x3dna_ensemble extract -p roll -s ' ' -n -o roll.dat
             # space separated, no row-label, to file 'roll.dat'
        x3dna_ensemble extract -e 1 -p chi1
             # extract the chi torsion angle of strand I, but exclude
             # those from the two terminal base pairs. For comparison,
             # run also: x3dna_ensemble extract -p chi1
        x3dna_ensemble extract -a
             # extract all parameters, each in a separate file
Options:
------------------------------------------------------------------------
  --separator, -s :   Separator for fields [\t] (default: )
   --par-name, -p :   Name of parameter to extract
   --fromfile, -f :   Parameters file (default: ensemble_example.out)
    --outfile, -o :   File of selected parameter (default: stdout)
   --end-bps, -e :   Number of end pairs to ignore (default: 0, 0)
            --all, -a:   Extract all parameters into separate files
          --clean, -c:   Clean up parameter files by the -a option
           --list, -l:   List all parameters
        --no-1col, -n:   Delete the first (label) column
           --help, -h:   Show this message



x3dna_ensemble analyze -h
------------------------------------------------------------------------
Analyze a MODEL/ENDMDL delineated ensemble of NMR structures or MD
trajectories. All models must correspond to different conformations
of the same molecule. For the analysis of duplexes (default), a template
base-pair input file, generated with 'find_pair' and manually edited
as necessary, must be provided.

Usage:
        x3dna_ensemble analyze options
Examples:
        x3dna_ensemble analyze -b bpfile.dat -e sample_md0.pdb
             # 21 models (0-20); output (default): 'ensemble_example.out'
             # also generate 'model_list.dat', see example below
        x3dna_ensemble analyze -b bpfile.dat -m model_list.dat -o ensemble_example2.out
             # diff ensemble_example.out ensemble_example2.out

        x3dna_ensemble analyze -b bpfile.dat -p 'pdbdir/model_*.pdb' -o ensemble_example3.out
             # note to quote the -p option; 20 models (1-20)
             # also generate 'pdb_list.dat', see example below
        x3dna_ensemble analyze -b bpfile.dat -l pdb_list.dat -o ensemble_example4.out
             # diff ensemble_example3.out ensemble_example4.out
             # note the order of the models: 1, 10..19, 2, 20, 3..9

        x3dna_ensemble analyze -s -e sample_md0.pdb
             # perform a 'single'-stranded analysis
        x3dna_ensemble analyze -t -e sample_md0.pdb
             # calculate all 'torsion' angles

        find_pair 355d.pdb 355d.bps
        x3dna_ensemble analyze -b 355d.bps --one 355d.pdb
             # process the structure file 355d.pdb specified in 355d.bps
Options:
------------------------------------------------------------------------
    --bpfile, -b :   Name of file containing base-pairing info
   --outfile, -o :   Output file (default: ensemble_example.out)
        --single, -s:   Single-stranded DNA/RNA
       --torsion, -t:   Torsion angles
          --ring, -r:   Base ring center & normal vector
  --ensemble, -e :   Ensemble delineated with MODEL/ENDMDL pairs
    --models, -m :   File containing an explicit list of model numbers
   --pattern, -p :   Pattern of model files to process (e.g., *.pdb)
      --list, -l :   File containing an explicit list of models
       --one, -n :   One regular structure [special case]
          --info, -i:   Show only model info in the ensemble [with -e]
          --help, -h:   Show this message